Revision (Route A)

Materials

Aims

You have been asked to design a quiz about certain materials, their reactions, and their uses that you have met in this chapter.

Work through the tasks below to show your understanding of this topic.
Your teacher may ask you to produce the quiz for homework, based on your answers to the tasks below.

Task 1: Reactions of metals

1 The table below show some observations from metal reactions.

	Reaction with		
	acid	oxygen	water
copper	does not react	does burn (forms a layer of oxide on surface when heated)	does not react
potassium	too dangerous to react	tarnishes in contact with oxygen	reacts vigorously with cold water (lilac flame produced)
magnesium	reacts vigorously	burns vigorously	reacts quickly with steam

Compare the reactivity of these three metals by completing the sentences below.
\qquad is the most reactive in water. \qquad is the least reactive.
\qquad is less reactive than \qquad but more reactive
than \qquad in oxygen.
\qquad is so reactive that it cannot be tested with dilute acid.
In terms of reactivity:
\qquad $>$ \qquad $>$ \qquad

Revision (Route A)

2 \qquad gas is produced when a metal reacts in dilute acid. The presence of this gas can be tested by holding a lit splint next to the mouth of reaction vessel.
Write the word equation for this reaction below, then balance the formula equation and add state symbols.
\qquad $+$ \qquad \rightarrow \qquad
\qquad H_{2} \qquad) + \qquad $\mathrm{O}_{2}($ \qquad) \rightarrow \qquad $\mathrm{H}_{2} \mathrm{O}(\ldots)$

Task 2: The reactivity series

1 The reactivity series of metals is shown below. Complete the series by filling in the corresponding element names and deleting the appropriate word on each arrow.

K	
Na	
Li	
Ca	
Mg	
Al	
C	
Zn	
Fe	
Pb	
Cu	
Ag	
Au	

2 Name the element that is the odd one out in the reactivity series above. Explain your answer.
\qquad
\qquad
3 a Carbon can be used to extract metals from their ores by replacing the metal in the compound with carbon. Name this type of reaction.

Revision (Route A)

b List the metals from the reactivity series that can be extracted using carbon. Describe and explain why this can be done.
\qquad
\qquad

4 Use the reactivity series to predict if the following pairs of substances will undergo displacement. For reactions that occur, write a word equation.
a iron + copper sulfate
b zinc + magnesium oxide
c sodium + iron chloride
d lead + aluminium nitrate

5 The iron ore haematite contains 70\% iron by mass. We can calculate the amount of iron obtained in 1 tonne (1000 kg) of haematite by:
mass of iron $(\mathrm{kg})=\frac{70}{100} \times 1000=700 \mathrm{~kg}$
Calculate the amount of calcium and magnesium obtained from 500 kg of dolomite, which is 22% calcium and 13% magnesium by mass. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad

Task 3: Ceramics, polymers, and composite materials

1 Complete the diagram below by joining ceramics, polymers, and composite materials to their descriptions and uses.

Type of material

Made from a mixture of materials. Properties shown are combinations of the properties of the materials that make it. Examples of these materials do not rust, are extremely light, and can withstand stretching and squashing forces.
There are two types of this material - natural and synthetic. Properties depend on the identical groups of atoms that make them.

Properties include flexibility, strength, and durability.

Description

These materials are made from compounds such as metal silicates, metal oxides, metal
carbides, and metal nitrides. They are often hard, brittle, and solids at room temperatures. They are also electrical insulators.

Possible uses

Bricks for buildings, electrical power-line insulators, jet-engine turbine blades, and common kitchen crockery (plates, bowls, mugs, and jugs).

Bricks for buildings,
electrical power-line
insulators, jet-engine
turbine blades, and
common kitchen
crockery (plates, bowls,
mugs, and jugs).

\qquad

Wool and cotton for clothes, rubber for tyres, LDPE for carrier bags, and PVC for insulating electric cables.

Chapter 3 Checkpoint Revision (Route A)

2 For one example of the uses of ceramics, polymers, and composites, explain how their properties make them suitable for their uses.

Ceramic: \qquad
\qquad

Polymer: \qquad
\qquad

Composite:

