Particles and their behaviour

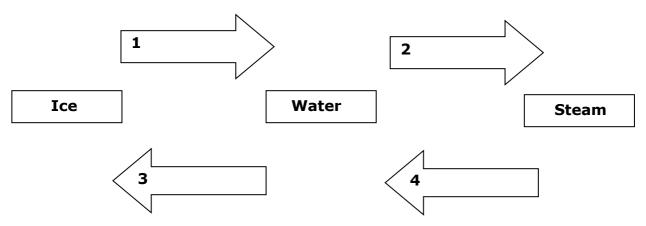
Task 1: Particles

Take a lump of modelling clay and break it in half. Keep breaking it in half until you can't get the lump any smaller.

Do you think you have just one particle left now? Explain your answer.				

Task 2: Particle model

Completing the table will help you describe arrangements of particles. You will need to draw a diagram for each state using circles for each particle. The first particle has been drawn in to help you. The missing words are given beneath.


Solid	Liquid	Gas	
The particles are in	The particles can	The particles are very	
positions.	move one another	apart and do not	
Solids cannot be	but cannot	one another. The	
·	Liquids have fixed	particles move	
Solids have fixed	volume but can be	very and can be	
·	·	compressed. Gases	
		any space.	

Missing words:

fast volumes fixed far escape poured touch compressed past fill.

Task 3: Changes of state

You need to complete the following diagram and table to show what happens to an ice cube when it is heated up in a saucepan.

- **1** Label arrows 1–4 with the name of the process that is happening.
- 2 Decide which of the statements in the table below describes each arrow.

Add the correct arrow number to each statement.

Arrow	Description		
Particles are very far apart and moving very quickly. They begin closer together until they are in contact with one another. Particle still move around but now take up less volume.			
	Particles start to vibrate more and more. They can move from their fixed positions and are able to move past one another.		
Particles gain enough energy to escape from each other. They begin move around on their own, very fast. They spread out into the full sof their container. Particles stop moving past each other and have fixed positions. They have some energy and vibrate but they cannot move about anymore.			

3 Water is not able to sublime. Tick the statement below that describes sublimation.

Particles are moving past each other freely and then escape. They now take up more space and move about very quickly, not touching one another.		
Particles are in fixed positions. They gain so much energy they can escape from their positions. They now take up more space and move about very quickly, not touching one another.		

Task 4: Melting and boiling points

Different substances have different melting points and boiling points. The melting point is the temperature when a substance turns from a solid to a liquid.

The boiling point is the temperature when a substance turns from a liquid to a gas. Melting always happens at a lower temperature than boiling.

Use the following melting points and boiling points to answer some questions about chlorine, water, and lead.

Substance	Melting point (°C)	Boiling point (°C)	
chlorine	-101 -34.7		
water	0	100	
lead	327	1744.0	

Tips:

- For a substance to be a solid, the temperature of the surroundings must be lower than its melting point.
- For a substance to be a liquid, the temperature of the surroundings must be higher than its melting point but lower than its boiling point.
- For a substance to be a gas, the temperature of the surroundings must be higher than its boiling point.

1	Chlorine is usually found as a gas. In 1954 a temperature of –66 °C was recorded Greenland. Would chlorine still have been a gas? Explain your answer.			
2	Would a puddle freeze if the temperature was –5 °C? Explain your answer.			
3	What state will lead be in if it is placed in an oven that has been heated to 250 °C? Explain your answer.			
Т	ask 5: Diffusion			
	this task you are going to write an explanation for diffusion in gases and juids using the particle model. First work through the questions.			
1	. In which state of matter are particles more spread out? Circle your answer.			
	liquid solid gas			
2	Tick the statement below that you think is correct.			
	Particles diffuse more quickly in gases.			
	Particles diffuse more quickly in liquids.			
3	Write an explanation for why diffusion happens more quickly in this state.			

T	ask 6: Gas pressu	re		
СО	ok at the pictures of the ntain air particles. The b own up has more particle	alloon that is		
1	Do you think the particle into each other and the		up balloon are more likely on? Circle your answer.	or less likely to bump
		more likely	less likely	
	When particles bump int force exerted across an		the balloon they exert a for	orce. The amount of
2	When you blow up a bal	loon, do you thir	nk the gas pressure increa	ses or decreases?
		increases	decreases	
3	Use the information from Use the key words given	_	nd 2 to write an explanatio	n for gas pressure.
	particles	force	gas pressure	collide